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Abstract- A Genetic Algorithm(GA) based approach for
accurate modeling of sphere-plane gaps using the point charge
simulation method is presented. Optimal arrangement of the
simulating charges locations, expressed in spherical coordinates,
are automatically arrived at using GA to eliminate dependency on
the user experience and judgment. Accurate results, compared
with earlier published techniques, are achieved for a wide range
of field non-uniformity factor. Recommended assignment factors,
based on optimum charge locations, are also derived and
presented. The present work shows that the GA can be useful to,
automatically, determine the appropriate arrangement of
fictitious charges efficiently for accurate field computations.

I. INTRODUCTION

The principle of the charge simulation method (CSM) is easy
to implement computationally and well suited for potential and
field solutions of open boundary problems [1- 6]. The method,
simply, computes the simulating charge magnitudes by
satisfying the boundary conditions at a selected number of
contour points along the electrodes surfaces. The unknown
charges are computed from the relation (1);

[P1[QI=[V] (1)
Where [P] is the potential coefficient matrix, [Q] is the column
vector of unknown charges; [V] is the column vector of known
potentials at the contour points.

As CSM accuracy depends on the type of simulating charge,
their numbers and locations, the CSM program for a particular
application becomes case specific and depends on experience
and judgment of the user. Several optimization methods were,
earlier, proposed to deal with these limitations [1-3,6].
Recently, it has been shown, using a GA model, that the CSM
becomes less effective for geometries with low non-uniformity
factor [1]. However, in this model the charges were confined

to the surface of a hypothetical sphere whose radius, the only
optimization parameter in this case, is to be determined by the
GA. Appropriate arrangements of fictitious charges and
contour points are indispensable to obtain accurate
solutions[4,5]. Nevertheless, as the charge number becomes
larger in 3-D calculations, it is more difficult to obtain the
whole charge arrangement both efficiently and accurately. In
fact, it may take hours of computational time to reach a
reasonable accuracy[2]. It is thus necessary to, further,
investigate more efficient automatic arrangement methods of
the simulating charges and assess the solution accuracy for
various non uniformity values. The geometry of a sphere-plane
gap is relevant for systems involving the dynamic of charged
particles in electric fields and, for this reason, is the subject of
research both theoretically and experimentally[7].

The purpose of study is to employ GAs to, automatically,
determine the optimal locations of simulating charges in the
CSM; thus eliminating the dependence on the personal
judgment and experience of the user in locating the charges
through a trial and error procedure. In the present calculations,
few point charges, 6 in this case, are used to simulate an
electrode system consisting of a sphere above a ground plane
in 3-D spherical coordinate system. A wide range for the non-
uniformity factor is assumed. A method is proposed to
determine an appropriate arrangement, the radial and angular
coordinates, of the fictitious simulating charges to achieve a
minimum rms error in the potential values on the sphere
surface.

II. MODEL DETAILS AND PARAMETERS

Figure (1) shows the geometric model of the sphere-plane
gap with the image sphere in 3-D coordinates. The sphere
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electrode with radius R, 1 per unit, is placed at a distance h per
unit above a grounded conducting plate.
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Figure (1) (a) 3-D electrode system, (b) coordinates of a point
charge inside the electrode system (r, 6, ¢).

A point P inside the sphere electrode can be expressed in
spherical coordinate system, whose origin is set at the center of
sphere electrode, as P(r, 0, @) where r is the radial distance
from the center of the sphere to point P , 0 € [0,n] is the angle
between the z axis and the line drawn from the origin to P, and
¢ €[0,2x] is the angle between the x axis and the line vertically
projected on the x-y plane from the point P.

The sphere-plane geometry is simulated using six point
charges placed on a hypothetical spherical surface, with radius
rc, concentric with the sphere. This radius, rc, can assume
values from 0 to R. The 6 and ¢ coordinates of each charge can
take any value within the above specified ranges. The contour
points are chosen such that, they are on the electrode surface,
along the line joining the corresponding charge and the center
of the sphere (radial with the charge point location). Earlier[1],
these point charges were fixed on the coordinate axes ( two on
each axis) within the simulating sphere.

Non uniformity factor 'f”’ & Assignment factor fa’.

The electric field non uniformity factor, f, is defined as the
maximum electric field intensity in the gap, which occurs at
the tip of the high voltage electrode in this case, to the mean
electric field intensity (V/h). This factor, largely, depends on
the gap spacing h and the sphere radius R. It is usually
employed to assess the error variation in simulating the CSM
model along with charge and contour point arrangement [8].

The assignment factor ’fa’ is defined as the ratio of the
distance between a contour point and the corresponding charge

point to the distance between two successive contour points.
In the present work, the distance between two successive
contour points is not a fixed value as earlier assumed [1]. In
fact, for each h/R, a range for the assignment factor exists and
will have minimum and maximum values (the range of
assignment factor). Singer et al. [4] suggested that this factor
has a value between 1 and 2. Others [6,7] suggested that this
factor lies between 0.7 and 1.5. Generally, the assignment
factor does not always lie in the range of 1 and 2. It depends
upon the number of simulating charges and decreases as
number of simulating charges increases. In actuality, the range
over which this parameter can vary is specific to a model based
on the type of charges and their number. It is shown here that
the range of the optimal assignment factor depends also, for the
same model, on the non uniformity of the geometry.

III. GENETIC ALGORITHM (GA)

Recently, GA has been successfully applied in various areas of
electric power and high voltage engineering including
optimization of charge simulation method [3,6].

GAs manipulate a set of candidate solutions, referred to as a
population of individuals and generate a new population at
each iteration of the algorithm. Each individual candidate
solution is typically represented as a string of decision
variables. The variables can be represented in integers or
binary digits. The values of the decision variables are
manipulated by subjecting the current population of individual
strings or chromosomes to a set of standard genetic operators
that are inspired by Darwinian evolution theory and are
referred to as reproduction, crossover, and mutation. When
some optimization criterion is reached (usually based on the
number of algorithm iterations or generations), the algorithm
terminates. Details of GAs operations are given in [9, 10].

IV. METHOD OF ANALYSIS

For GA calculations, the position of each fictitious charge is
described as a ‘‘chromosome’’. The r, 8 and ¢ components of a
fictitious-charge position are described as sequences of binary
digits with lengths of N2 bits. The length of a chromosome is
N1*N2bits, where N1 is the number of optimization variables
and equals 13 in this case. The first variable is rc (The radius of
the hypothetical sphere on which the fictitious charges are
placed). The second, 61, and the third, @1 variables are the
components of the first charge while 62 and @2 are those of the
second charge and so on. The table shows the structure of a
chromosome. Six contour points are placed on the electrode
sphere surface radial with the positions of the fictitious
charges.

|I’C|91|(I)1|92|(D2|93|(D3|94|(I)4|95|(I)5|96|(I)6|

Structure of a chromosome.
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The objective function used is the root mean square (RMS) of
the potential errors. The RMS value is obtained by evaluating
errors at 100 regularly spaced points on the sphere surface. The
objective function (fitness function) has the form (2).

m

S -9r.0.0)F
U =12

2

m
Where V is the electrode voltage, ¢ is the potential obtained
by the CSM and m is the number of check points.

The GA Parameters

Number of fictitious charges of electrode 6  point charges

Number of optimization variables 13 variables
Number of bits per variable per charge 14  bits
Radius of sphere electrode R 1 per unit
Electrode voltage 1 per unit
Population size 4

Mutation rate 0.02

Number of generation 10000

Using roulette wheel selection and single point crossover.

The bit sequences of 4 individuals of the ““Oth generation’’, the
initial condition, are created by using uniformly random
numbers. The calculations terminate when the number of
generations reach 10000. Based on preliminary tests, the search
range for the radius, rc, is between 0.001 to 0.5, while for the
angle 0 the range is from 0 to m and for the angle ¢ from 0 to
2n. The sequence of the proposed algorithm is as follows:

1. Determine the domain, for the optimization parameters.

2. GAs generates initial uniform random values for the
optimization parameters (rc, 0, @, 0,, D, ,....).

3. For each call to the CSM routine by GAs, the CSM will
produce the RMS error for these optimization parameters.

4. The GAs will then evaluate the fitness function and modify
the optimization parameters to minimize the RMS error.

5. Steps 3-4 are repeated for a prespecified number of
generations (10000 in this case).
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Fig. (2) Plots of potential error(%) for h/R =49.00, f=49.51
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V. RESULTS AND DISCUSSION

An example of the percentage potential error distribution on
the sphere surface is given in figure2. The axes are the angle ¢
and O coordinates of the points on the sphere. The maximum
error in potential in this case is about 4.4e-06 %.

To demonstrate the merits of the proposed method, different
gap distances (12 different cases for the non uniformity factor
between 1 and 1000) are considered. Figure 3 shows the
convergence of the fitness function for these cases. The rms
error varies, upon convergence, between 4.6e-4% and 1.3e-6%.
The figure shows that the convergence for gap distance 99.500
is relatively faster than the other two gap distances. The results
(locations of the charges) for the three cases are given in tables
1-3.

It was observed that as h/R increases, rc generally decreases.
While the summation of the magnitudes of the simulation
charges also decrease, their values tend to be more uniform for
higher h/R. The GA tends to align the charges such that the
charge with the largest magnitude usually lies in the lower half
of the sphere very close to the z axis with the other charges
generally symmetric around the z-axis.

;
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Fig.3 Variation of fitness function with number of generations

Table 1 Locations of the charges for h /R=9.00, f=9.5511

Charges | Magnitudes Coordinates -
rc Theta Phi

1 0.0067e-10 | 0.011752 | 38.6742 | 151.8403

2 0.2062e-10 | 0.011752 | 46.6508 | 58.7365

3 0.0700e-10 | 0.011752 | 38.9929 | 307.8997

4 -0.3350e-10 | 0.011752 | 98.0480 | 233.5396

5 0.8022e-10 | 0.011752 | 168.3648 | 230.1556

6 0.4205e-10 | 0.011752 | 46.7387 | 230.6611
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Table 2 Locations of charges for h /R=25.00, f=25.5194

Coordinates
Charges | Magnitudes rc Theta Phi
1 0.1897e-10 | 0.00275 | 14.00842 | 187.63596
2 02596 e-10 | 0.00275 | 9.98718 42.10218
3 0.6364 e-10 | 0.00275 | 179.53855 | 107.93628
4 0.0403 e-10 | 0.00275 | 43.03607 | 30491119
5 -0.0044 e-10 | 0.00275 | 147.97290 | 113.47372
6 0.0122 e-10 | 0.00275 | 28.89581 | 243.69163
Table 3 the locations of charges for h /R=99.50, f=100.00
. Coordinates
Charges | Magnitudes " Theta i
1 0.2421e-10 | 0.001041 | 66.2406 | 153.1368
2 0.2100e-10 | 0.001041 | 96.8724 | 51.6609
3 0.2814e-10 | 0.001041 | 172.1113 | 249.8444
4 0.0321e-10 | 0.001041 | 12.1516 | 135.9531
5 0.1242e-10 | 0.001041 | 94.6420 | 254.6567
6 0.2278e-10 | 0.001041 | 46.1234 | 316.8650
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Figure 4 Optimal locations of the simulating charge on the
surface of hypothetical sphere at h/R=9.00, f=9.5511.

An example of the optimal locations of the simulating charges
(six point charges moving freely on the hypothetical sphere of
radius rc) for field non uniformity factor (h/R=9.00, f=9.5511)
is shown in figure 4 and given in table 1. This arrangement is
generally in conformity with the physical understanding of the
geometry of a sphere- plane gap.

The variation of rc for different field non uniformity factors is
shown in figure 5. It is seen that this variation is fast for
relatively low values of field non uniformity then becomes
practically constant at higher values. The optimal values of the
locations of fictitious charges for the corresponding field non
uniformity factors are obtained (using the GA-CSM program).

The maximum potential error and rms potential error are
calculated and shown in figure 6. Plots in figure 6 indicate

that, at higher values of field non uniformity factors the
simulation errors are the lowest; but higher optimal values are
possible only at higher non uniform field factors (as indicated
by figure 6 and table 4). This is in general agreement with the
results in [1]. However, in [1] all the charges were fixed to the
coordinate axes ( two on each axis) for all values of non
uniformities with the radius of the simulating sphere as the
only optimization variable in this case. In the present work, the
simulating charges are allowed to move freely on the sphere
surface and the optimization parameters in this case are not the
sphere radius only, but also the angular position of each charge
(8, 9) for a total number of 13 optimization parameters. These
parameters will vary for each non uniformity value.

It is clear that the present approach (moving charges)
produce more accurate results than when charges are fixed [1].
These results are reported in table 4 for different values of non
uniformity factor and compared with those of ref. [1].
Significant improvement in the accuracy is achieved for the
whole range of non uniformity specially for lower values of
h/R (h < R) although errors within this range are still higher
than those necessary for accurate field values.
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Figure 5Variation of radius rc with f
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Figure 6 Variation of error (rms and maximum) with f.
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The ranges of assignment factors for the different non
uniformity factors are shown in table 5. The assignment factor
for this method lies between 0.2 - 3.5. All computations have
been carried in the MATLAB environment using 1.7 GHZ PC
with typical execution time of about 35 minutes including
computation time, writing files and printing.

From the range of assignment factor and the value of radius of
sphere rc for each value of h /R (non uniformity factor), simple
procedures can be developed to obtain appropriate charges
locations with reasonable % rms error. With few point charges,
6 in this case and for a given h /R value, place the charges on a
sphere surface of radius rc where the minimum and maximum
distance between successive contour points lies within the
range of assignment factor given in Fig. 7 and Table 5. The
figure shows the variation of the hypothetical sphere radius rc
and the range of assignment factor for different values of non
uniformity factor.

Table 4. RMS errors for different values ofh /R

Present Results [1]

h /R f % rms error f % rms error
0.1040 1.0527 | 3.3780e+00 | 1.0336 | 7.5446e+00
02112 1.1279 1.6749¢+00 | 1.1020 | 3.4553e+00
09197 1.6940 | 2.2675e-01 1.6846 4.0870e-01
13110 | 2.0283 1.3613e-01 2.0342 1.7520e-01
25030 | 3.1501 2.2992e-02 | 3.1516 6.9000e-02
9.0000 | 9.5511 4.6176e-04 | 9.5511 3.1000e-03

49.0000 | 49.5100 | 1.3220e-06 | 49.5049 | 3.5794e0-5
99.5000 | 100.005 | 1.3623e-06 | 100.000 | 3.2093e0-6
999.500 | 1000.00 | 1.3189e-06 | 1000.00 | 1.4768e0-6

Table 5. Range of assignment factors for different f

h/R f fa
0.1040 1.0527 0.1735-0.5408
02112 1.1279 0.2441-0.9010
09197 1.6940 0.2808-1.5926
13110 2.0283 0.4900-1.8300
2.5030 3.1501 0.3312-1.5019
5.0000 5.5860 0.3228-3.4195
9.0000 9.5511 0.3907-1.1186
25.0000 25.5194 0.3365-2.4930
49.0000 49.5100 0.3271-2.8903
99.5000 100.0050 0.3397-1.0470

500.0000 500.5010 0.3599-1.4534

999.5000 1000.0000 0.3599-1.4534

VI. CONCLUSIONS

An improved optimization of the charge simulation method
using genetic algorithms has been presented for the geometry

10 T T
Maximurm assignment factor

IMinirmum assignment factor

Radius of hypothetical sphere 're!

Asgsignment factor and radius of the hypothetical sphere

Man uniformity factar
Figure 7 Variation of rc and the range of assignment factor
with f'(different values of h /R).

of a sphere plane gap. The proposed genetic algorithms offers
efficiency and accuracy for determination of the optimal
locations of simulating charges and their magnitudes. Accurate
potential distributions around 3-D spherical electrode system
are obtained using a few point charges moving freely on a
hypothetical simulating sphere. Accurate results, compared
with earlier published techniques, are achieved for a wide
range of field non-uniformity factor. Recommended
assignment factors, based on optimum charge locations, are
also derived and presented. The present work shows that the
GA can be useful to, automatically, determine the appropriate
arrangement of fictitious charges for accurate field
computations.
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